173483694
Linear Systems (2x2 and 3x3)Name __________

Find a unique solution to each system or state that it is singular.

#1. \( \begin{cases} 3x+10y=-10\\-2x+4y=-1\\\end{cases} \)
#2. \( \begin{cases} -10x+4y=8\\4x-y=-7\\\end{cases} \)
#3. \( \begin{cases} -9x-9y=-5\\-5x+2y=1\\\end{cases} \)
#4. \( \begin{cases} 9x-8y=-7\\-5x-7y=-1\\\end{cases} \)
#5. \( \begin{cases} -4x+2y=-9\\-10x+4y=5\\\end{cases} \)
#6. \( \begin{cases} 4x+7y=-6\\8x-8y=-1\\\end{cases} \)
#7. \( \begin{cases} 4x-6y=-6\\x+8y=1\\\end{cases} \)
#8. \( \begin{cases} -4x+10y=-9\\8x-3y=9\\\end{cases} \)
#9. \( \begin{cases} -x-4y=-9\\8x+9y=10\\\end{cases} \)
#10. \( \begin{cases} -7x-2y=-10\\-5x+5y=1\\\end{cases} \)
#11. \( \begin{cases} -3x+2y=-5\\9x+9y=-5\\\end{cases} \)
#12. \( \begin{cases} 10x+5y=-5\\-2x+5y=6\\\end{cases} \)
#13. \( \begin{cases} 9x-4y-9z=-9\\-9x-7y+9z=-1\\6x+3y+2z=2\\\end{cases} \)
#14. \( \begin{cases} 7x-8y+7z=1\\-9x+y-4z=10\\6x-2y+9z=-4\\\end{cases} \)
 1
A
B
C
D
 2
A
B
C
D
 3
A
B
C
D
 4
A
B
C
D
 5
A
B
C
D
 6
A
B
C
D
 7
A
B
C
D
 8
A
B
C
D
 9
A
B
C
D
10
A
B
C
D
11
A
B
C
D
12
A
B
C
D
13
A
B
C
D
14
A
B
C
D