507279906
Linear Systems (2x2 and 3x3)Name __________

Find a unique solution to each system or state that it is singular.

#1. \( \begin{cases} -8x+8y=7\\3x-4y=8\\\end{cases} \)
#2. \( \begin{cases} 6x+y=4\\x+8y=-8\\\end{cases} \)
#3. \( \begin{cases} -3x+9y=7\\-2x+y=10\\\end{cases} \)
#4. \( \begin{cases} -8x+6y=-2\\-10x-7y=-3\\\end{cases} \)
#5. \( \begin{cases} 6x+8y=-5\\-8x-5y=-4\\\end{cases} \)
#6. \( \begin{cases} 9x-4y=1\\x+9y=-9\\\end{cases} \)
#7. \( \begin{cases} 7x-4y=4\\10x-2y=-1\\\end{cases} \)
#8. \( \begin{cases} x-10y=7\\5x+3y=-8\\\end{cases} \)
#9. \( \begin{cases} 4x+7y=-1\\-8x-4y=10\\\end{cases} \)
#10. \( \begin{cases} 9x-4y=-6\\3x+y=2\\\end{cases} \)
#11. \( \begin{cases} 3x+y=5\\8x-7y=6\\\end{cases} \)
#12. \( \begin{cases} -x-2y=-7\\-9x+3y=9\\\end{cases} \)
#13. \( \begin{cases} 9x+6y-z=-3\\-2x-2y-2z=-8\\-8x+y-9z=4\\\end{cases} \)
#14. \( \begin{cases} 9x+7y-3z=-7\\x+7y+7z=-9\\-7x+y+4z=3\\\end{cases} \)
 1
A
B
C
D
 2
A
B
C
D
 3
A
B
C
D
 4
A
B
C
D
 5
A
B
C
D
 6
A
B
C
D
 7
A
B
C
D
 8
A
B
C
D
 9
A
B
C
D
10
A
B
C
D
11
A
B
C
D
12
A
B
C
D
13
A
B
C
D
14
A
B
C
D