C
A
D
Y
M
A
T
H
Assignments
Battle
Projects
Text Scrambler
Text to Image
TI-84/nspire Calculator Basic Programs
Randomizer
Vocabulary Trinket
Demos
Trebuchet (Linear/Angular Velocity)
Links
CiteThis (Citation Generator)
Academic Phrasebank
Desmos (Graphing Calculator)
WabbitEmu (TI-84 Emulator)
Wolfram Alpha (Equation Solver)
Contact
Login
Register
English
中文
français
654339244
First-Order Linear Differential Equations
Name __________
Solve the differential equations.
#1.
\(\frac{dy}{dx} + e^x y = 0\)
\(y = C(x^2-1)\)
\(y = C\csc^2 x\)
\(y = Ce^{-e^x}\)
\(y = Ce^{-x(\ln x - 1)}\)
#2.
\(\frac{dy}{dx} + y\frac{\cosh x}{\sinh x} = 0,\quad \sinh x \neq 0\)
\(y = C(1+x^3)\)
\(y = \frac{C}{1+\sin x}\)
\(y = \frac{C}{\ln x}\)
\(y = \frac{C}{\sinh x}\)
#3.
\( \sin x \frac{dy}{dx}+(\cos x)y=\tan x,\quad 0 < x < \pi/2 \)
\( y=(\csc x)(ln|\sec x|+C) \)
\( y=\frac{x^3}{3(x-1)^4}-\frac{x}{(x-1)^4}+\frac{C}{(x-1)^4} \)
\(y = \frac{(\ln x)^2}{2} + Cx\)
\(y = \frac{x \text{Shi}(x) - \cosh x + C}{x}\)
#4.
\(\frac{dy}{dx} + \frac{2x}{1+x^2}y = \frac{x}{(1+x^2)^2}\)
\(y = \frac{\frac{1}{2}\ln(1+x^2) + C}{1+x^2}\)
\(y = \frac{e^x + C}{\ln x}\)
\(y = \frac{x \sinh^{-1} x - \sqrt{1+x^2} + C}{x}\)
\(y = \sin x + C\csc x\)
#5.
\(\frac{dy}{dx} + \frac{2y}{x} = \frac{\cos x}{x^2},\quad x > 0\)
\(y = \frac{-\cos x + C}{\sin x}\)
\(y = \frac{\sin x + C}{x^2}\)
\(y = \frac{\tan x + C}{\sec x}\)
\(y = \frac{\tan(\ln x) + C}{\ln x}\)
#6.
\(\frac{dy}{dx} + 2xy = 4x\)
\(y = 2 + Ce^{-x^2}\)
\(y = \frac{\frac{1}{2}x^2 + C}{\sqrt{1+x^2}}\)
\(y = \frac{\text{Ei}(x) - \frac{e^x}{x} + C}{x}\)
\(y = \sin x + C\cos x\)
1
A
B
C
D
2
A
B
C
D
3
A
B
C
D
4
A
B
C
D
5
A
B
C
D
6
A
B
C
D