#1. Use 1 steps of Newton's Method to estimate the solution to the equation. Use the given starting value. \(\sqrt{2x-1}=0,\quad x_0=3,\quad x_1=\)
#2. Use 2 steps of Newton's Method to estimate the solution to the equation. Use the given starting value. \(x^5+4x^4+6x^3-3x^2+4x+4=0,\quad x_0=-3,\quad x_2=\)
#3. Use 2 steps of Newton's Method to estimate the solution to the equation. Use the given starting value. \(-x^4+x^3+4x^2+6x-3=0,\quad x_0=-2,\quad x_2=\)
#4. Use 1 steps of Newton's Method to estimate the solution to the equation. Use the given starting value. \(2\cos\left(2x-5\right)=0,\quad x_0=-1,\quad x_1=\)
#5. Use 2 steps of Newton's Method to estimate the solution to the equation. Use the given starting value. \(\csc\left(2x-3\right)=0,\quad x_0=5,\quad x_2=\)
#6. Use 1 steps of Newton's Method to estimate the solution to the equation. Use the given starting value. \(\sec\left(2x-6\right)=0,\quad x_0=-4,\quad x_1=\)