#1. Use 1 steps of Newton's Method to estimate the solution to the equation. Use the given starting value. \(3e^{x+5}-4=0,\quad x_0=5,\quad x_1=\)
#2. Use 1 steps of Newton's Method to estimate the solution to the equation. Use the given starting value. \(-x^5-6x^4-2x^3+6x^2-x-6=0,\quad x_0=-3,\quad x_1=\)
#3. Use 2 steps of Newton's Method to estimate the solution to the equation. Use the given starting value. \(2\tan\left(-3x-6\right)=0,\quad x_0=5,\quad x_2=\)
#4. Use 3 steps of Newton's Method to estimate the solution to the equation. Use the given starting value. \(e^{x+5}=0,\quad x_0=3,\quad x_3=\)
#5. Use 2 steps of Newton's Method to estimate the solution to the equation. Use the given starting value. \(-\frac{1}{3}e^{-4x}+6=0,\quad x_0=-6,\quad x_2=\)
#6. Use 3 steps of Newton's Method to estimate the solution to the equation. Use the given starting value. \(-4\cdot 2^{-4x-4}+1=0,\quad x_0=-6,\quad x_3=\)