279166838
Factorization into A=LUName __________

What matrix \(E\) puts \(A\) into triangular form \(EA=U\)?

#1. \(A=\begin{bmatrix} 6 & -6\\-6 & 4\\\end{bmatrix}\)
#2. \(A=\begin{bmatrix} 0 & 0\\0 & 3\\\end{bmatrix}\)
#3. \(A=\begin{bmatrix} -3 & 5 & 0\\0 & 1 & 2\\-6 & 16 & 13\\\end{bmatrix}\)
#4. \(A=\begin{bmatrix} -5 & -2 & 0\\-30 & -11 & -2\\-25 & -11 & 3\\\end{bmatrix}\)

Compute the factorization \(A=LU\)

#5. \(A=\begin{bmatrix} -3 & -5\\-6 & -7\\\end{bmatrix}\)
#6. \(A=\begin{bmatrix} 3 & 6\\6 & 15\\\end{bmatrix}\)
#7. \(A=\begin{bmatrix} 4 & 3 & -3\\12 & 15 & -13\\-24 & -12 & 13\\\end{bmatrix}\)
#8. \(A=\begin{bmatrix} 1 & 0 & 2\\4 & -3 & 8\\-3 & 3 & 0\\\end{bmatrix}\)

Compute the factorization \(A=LDU\)

#9. \(A=\begin{bmatrix} 3 & 9\\-3 & -6\\\end{bmatrix}\)
#10. \(A=\begin{bmatrix} -1 & -1\\6 & 8\\\end{bmatrix}\)
1
A
B
C
D
2
A
B
C
D
3
A
B
C
D
4
A
B
C
D
5
A
B
C
D
6
A
B
C
D
7
A
B
C
D
8
A
B
C
D
9
A
B
C
D
10
A
B
C
D