559524946
Eigenvalues & EigenvectorsName __________

Calculate the determinant.

#1. \(\begin{vmatrix} -6 & -1\\-5 & -8\\\end{vmatrix}\)
#2. \(\begin{vmatrix} -9 & -8\\-10 & 1\\\end{vmatrix}\)
#3. \(\begin{vmatrix} -10 & 2 & 4\\10 & 6 & 3\\-4 & -10 & 8\\\end{vmatrix}\)
#4. \(\begin{vmatrix} -9 & -5 & -2\\5 & 7 & -4\\-1 & -9 & 9\\\end{vmatrix}\)

Compute the trace of matrix \(A\).

#5. \(A=\begin{bmatrix} 6 & -1\\-6 & -2\\\end{bmatrix}\)
#6. \(A=\begin{bmatrix} 8 & -10 & 3\\7 & 8 & -3\\6 & 9 & -7\\\end{bmatrix}\)

Compute the eigenvalues of matrix \(A\).

#7. \(A=\begin{bmatrix} 3 & 0\\0 & 3\\\end{bmatrix}\)
#8. \(A=\begin{bmatrix} 3 & 0\\0 & 1\\\end{bmatrix}\)
#9. \(A=\begin{bmatrix} 1 & 0 & 2\\-4 & 2 & -7\\-4 & 0 & -5\\\end{bmatrix}\)
#10. \(A=\begin{bmatrix} -7 & 8 & 8\\-14 & 19 & 16\\10 & -14 & -11\\\end{bmatrix}\)

Choose a set of correct eigenvectors of matrix \(A\).

#11. \(A=\begin{bmatrix} 5 & -3\\4 & -2\\\end{bmatrix}\)
#12. \(A=\begin{bmatrix} 2 & 4\\0 & 3\\\end{bmatrix}\)

Choose a set of correct eigenvectors for the matrix \(A\).

#13. \(A=\begin{bmatrix} -2 & 0 & 0\\0 & -1 & 0\\0 & 0 & 0\\\end{bmatrix}\)
#14. \(A=\begin{bmatrix} 0 & -\frac{2}{3} & \frac{2}{3}\\1 & -\frac{5}{3} & \frac{2}{3}\\-2 & \frac{4}{3} & -\frac{7}{3}\\\end{bmatrix}\)
 1
A
B
C
D
 2
A
B
C
D
 3
A
B
C
D
 4
A
B
C
D
 5
A
B
C
D
 6
A
B
C
D
 7
A
B
C
D
 8
A
B
C
D
 9
A
B
C
D
10
A
B
C
D
11
A
B
C
D
12
A
B
C
D
13
A
B
C
D
14
A
B
C
D