184787085
Eigenvalues & EigenvectorsName __________

Calculate the determinant.

#1. \(\begin{vmatrix} -9 & -1\\4 & 10\\\end{vmatrix}\)
#2. \(\begin{vmatrix} 7 & -7\\8 & 1\\\end{vmatrix}\)
#3. \(\begin{vmatrix} 1 & -4 & -15\\-10 & 8 & -10\\3 & 8 & 55\\\end{vmatrix}\)
#4. \(\begin{vmatrix} 1 & 1 & 3\\-2 & -10 & -38\\5 & -1 & -9\\\end{vmatrix}\)

Compute the trace of matrix \(A\).

#5. \(A=\begin{bmatrix} -1 & -1\\-1 & -1\\\end{bmatrix}\)
#6. \(A=\begin{bmatrix} 8 & -1 & -15\\2 & 6 & -10\\-2 & 10 & -6\\\end{bmatrix}\)

Compute the eigenvalues of matrix \(A\).

#7. \(A=\begin{bmatrix} 5 & -8\\4 & -7\\\end{bmatrix}\)
#8. \(A=\begin{bmatrix} -\frac{16}{7} & \frac{4}{7}\\-\frac{8}{7} & \frac{2}{7}\\\end{bmatrix}\)
#9. \(A=\begin{bmatrix} \frac{5}{2} & 1 & 0\\\frac{1}{4} & \frac{5}{2} & 0\\-\frac{3}{2} & -3 & 0\\\end{bmatrix}\)
#10. \(A=\begin{bmatrix} -23 & 42 & 32\\-28 & 51 & 40\\20 & -36 & -29\\\end{bmatrix}\)

Choose a set of correct eigenvectors of matrix \(A\).

#11. \(A=\begin{bmatrix} -\frac{2}{3} & \frac{4}{3}\\\frac{2}{3} & -\frac{4}{3}\\\end{bmatrix}\)
#12. \(A=\begin{bmatrix} \frac{26}{11} & \frac{16}{11}\\-\frac{12}{11} & -\frac{26}{11}\\\end{bmatrix}\)

Choose a set of correct eigenvectors for the matrix \(A\).

#13. \(A=\begin{bmatrix} 0 & 0 & 0\\0 & 0 & 0\\1 & -1 & 1\\\end{bmatrix}\)
#14. \(A=\begin{bmatrix} 2 & 0 & 0\\1 & 1 & 0\\-1 & -3 & -2\\\end{bmatrix}\)
 1
A
B
C
D
 2
A
B
C
D
 3
A
B
C
D
 4
A
B
C
D
 5
A
B
C
D
 6
A
B
C
D
 7
A
B
C
D
 8
A
B
C
D
 9
A
B
C
D
10
A
B
C
D
11
A
B
C
D
12
A
B
C
D
13
A
B
C
D
14
A
B
C
D