1524889987
Eigenvalues & EigenvectorsName __________

Calculate the determinant.

#1. \(\begin{vmatrix} 4 & 4\\6 & 6\\\end{vmatrix}\)
#2. \(\begin{vmatrix} -3 & 12\\-1 & 4\\\end{vmatrix}\)
#3. \(\begin{vmatrix} -6 & 7 & 9\\-8 & -8 & 2\\1 & -6 & -2\\\end{vmatrix}\)
#4. \(\begin{vmatrix} -7 & -3 & 3\\-1 & -7 & -1\\-1 & -7 & -5\\\end{vmatrix}\)

Compute the trace of matrix \(A\).

#5. \(A=\begin{bmatrix} 10 & 4\\-7 & 8\\\end{bmatrix}\)
#6. \(A=\begin{bmatrix} -3 & -3 & -3\\-6 & -1 & 4\\3 & 2 & 1\\\end{bmatrix}\)

Compute the eigenvalues of matrix \(A\).

#7. \(A=\begin{bmatrix} -2 & \frac{1}{2}\\0 & -3\\\end{bmatrix}\)
#8. \(A=\begin{bmatrix} 2 & 0\\-1 & 1\\\end{bmatrix}\)
#9. \(A=\begin{bmatrix} \frac{7}{2} & 4 & -\frac{7}{2}\\-\frac{1}{2} & 2 & \frac{1}{2}\\\frac{1}{2} & 4 & -\frac{1}{2}\\\end{bmatrix}\)
#10. \(A=\begin{bmatrix} 1 & 0 & 0\\4 & -3 & 2\\4 & -4 & 3\\\end{bmatrix}\)

Choose a set of correct eigenvectors of matrix \(A\).

#11. \(A=\begin{bmatrix} -1 & 0\\0 & 2\\\end{bmatrix}\)
#12. \(A=\begin{bmatrix} -\frac{11}{3} & -\frac{8}{3}\\\frac{2}{3} & -\frac{1}{3}\\\end{bmatrix}\)

Choose a set of correct eigenvectors for the matrix \(A\).

#13. \(A=\begin{bmatrix} -3 & 3 & 3\\0 & 0 & 3\\0 & 0 & -3\\\end{bmatrix}\)
#14. \(A=\begin{bmatrix} -3 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\\\end{bmatrix}\)
 1
A
B
C
D
 2
A
B
C
D
 3
A
B
C
D
 4
A
B
C
D
 5
A
B
C
D
 6
A
B
C
D
 7
A
B
C
D
 8
A
B
C
D
 9
A
B
C
D
10
A
B
C
D
11
A
B
C
D
12
A
B
C
D
13
A
B
C
D
14
A
B
C
D