2094451556
Eigenvalues & EigenvectorsName __________

Calculate the determinant.

#1. \(\begin{vmatrix} 10 & -9\\-6 & 8\\\end{vmatrix}\)
#2. \(\begin{vmatrix} -1 & -4\\-3 & -6\\\end{vmatrix}\)
#3. \(\begin{vmatrix} -2 & -8 & -4\\1 & 9 & 5\\-10 & -3 & 5\\\end{vmatrix}\)
#4. \(\begin{vmatrix} -6 & 8 & 7\\-6 & -1 & -4\\9 & -8 & -9\\\end{vmatrix}\)

Compute the trace of matrix \(A\).

#5. \(A=\begin{bmatrix} 1 & -9\\-10 & -3\\\end{bmatrix}\)
#6. \(A=\begin{bmatrix} -3 & -1 & -9\\4 & 8 & 4\\-8 & 9 & -9\\\end{bmatrix}\)

Compute the eigenvalues of matrix \(A\).

#7. \(A=\begin{bmatrix} -1 & -4\\-2 & 1\\\end{bmatrix}\)
#8. \(A=\begin{bmatrix} 2 & 0\\\frac{1}{3} & 1\\\end{bmatrix}\)
#9. \(A=\begin{bmatrix} -\frac{1}{5} & -\frac{4}{5} & -\frac{2}{5}\\-\frac{2}{5} & \frac{12}{5} & \frac{16}{5}\\\frac{2}{5} & -\frac{7}{5} & -\frac{11}{5}\\\end{bmatrix}\)
#10. \(A=\begin{bmatrix} -1 & 0 & 0\\0 & -2 & 0\\0 & 0 & 0\\\end{bmatrix}\)

Choose a set of correct eigenvectors of matrix \(A\).

#11. \(A=\begin{bmatrix} -3 & 0\\0 & -3\\\end{bmatrix}\)
#12. \(A=\begin{bmatrix} -\frac{24}{11} & -\frac{18}{11}\\-\frac{12}{11} & -\frac{9}{11}\\\end{bmatrix}\)

Choose a set of correct eigenvectors for the matrix \(A\).

#13. \(A=\begin{bmatrix} -1 & -2 & 4\\0 & 3 & -6\\0 & 3 & -6\\\end{bmatrix}\)
#14. \(A=\begin{bmatrix} 7 & -2 & -4\\5 & 0 & -4\\\frac{7}{2} & -\frac{3}{2} & -1\\\end{bmatrix}\)
 1
A
B
C
D
 2
A
B
C
D
 3
A
B
C
D
 4
A
B
C
D
 5
A
B
C
D
 6
A
B
C
D
 7
A
B
C
D
 8
A
B
C
D
 9
A
B
C
D
10
A
B
C
D
11
A
B
C
D
12
A
B
C
D
13
A
B
C
D
14
A
B
C
D