1977088462
Infinite Series PracticeName __________

Find the partial sum of the geometric series.

#1. \( \sum\limits_{k=-2}^{1} \frac{(-4)^{{k+1}}}{(-5)^{{k-1}}} \)
#2. \( \sum\limits_{k=1}^{7} \frac{(-6)^{{k+1}}}{6^{{k-1}}} \)

Determine whether the series converges or diverges.

#3. \( \sum\limits_{k=1}^{\infty} \frac{3^{{k-1}}}{(-3)^{{k}}} \)
#4. \( \sum\limits_{k=1}^{\infty} \frac{[sin(1)]^{{k+1}}}{(-5)^{{k+1}}} \)
#5. \( \sum\limits_{k=-2}^{\infty}\frac{-4}{k+3}+\frac{4}{k+4}\)
#6. \( \sum\limits_{k=-1}^{\infty}\frac{1}{k+5}+\frac{-1}{k+6}\)
#7. \( \sum\limits_{k=1}^{\infty} \frac{4^k}{cos(k)} \)
#8. \( \sum\limits_{k=0}^{\infty} \frac{2^k-1}{7k^2} \)
#9. \( \sum\limits_{k=3}^{\infty} \frac{1}{k^{\frac{4}{3}}} \)
#10. \( \sum\limits_{k=3}^{\infty} \frac{-5}{k^{\frac{9}{7}}} \)
#11. \( \sum\limits_{k=-2}^{\infty} \frac{e^k}{5^k} \)
#12. \( \sum\limits_{k=0}^{\infty} \frac{5^k}{cos(k)} \)
#13. \( \sum\limits_{k=1}^{\infty} \frac{-6}{k^{\frac{5}{6}}} \)
#14. \( \sum\limits_{k=2}^{\infty} \frac{-4}{k^{\frac{10}{9}}} \)
#15. \( \sum\limits_{k=-2}^{\infty} \frac{10k^2}{5^k} \)
#16. \( \sum\limits_{k=-1}^{\infty} (-2)^{{k+2}} \)
 1
A
B
C
D
 2
A
B
C
D
 3
A
B
C
D
 4
A
B
C
D
 5
A
B
C
D
 6
A
B
C
D
 7
A
B
C
D
 8
A
B
C
D
 9
A
B
C
D
10
A
B
C
D
11
A
B
C
D
12
A
B
C
D
13
A
B
C
D
14
A
B
C
D
15
A
B
C
D
16
A
B
C
D