C
A
D
Y
M
A
T
H
Assignments
Battle
Projects
Text Scrambler
Text to Image
TI-84/nspire Calculator Basic Programs
Randomizer
Vocabulary Trinket
Demos
Trebuchet (Linear/Angular Velocity)
Links
CiteThis (Citation Generator)
Academic Phrasebank
Desmos (Graphing Calculator)
WabbitEmu (TI-84 Emulator)
Wolfram Alpha (Equation Solver)
Contact
Login
Register
English
中文
français
731705912
Infinite Series Practice
Name __________
Find the partial sum of the geometric series.
#1.
\( \sum\limits_{k=-1}^{2} \frac{2^{{k}}}{(-5)^{{k+1}}} \)
\(-\frac{87}{100}\)
\(0.348\)
\(0.696\)
\(1\)
#2.
\( \sum\limits_{k=-1}^{5} (-4)^{{k+1}} \)
\(-1404.466\)
\(-1\)
\(-\frac{3}{8}\)
\(3277\)
Determine whether the series converges or diverges.
#3.
\( \sum\limits_{k=-2}^{\infty} \frac{1}{(-10)^{{k-1}}} \)
\(-1755.274\)
\(-909.091\)
\(-\frac{10000}{9}\)
\(-\frac{1}{11}\)
#4.
\( \sum\limits_{k=0}^{\infty} [sin(1)]^{{k-1}} \)
\(-12.268\)
\(-\frac{2}{3}\)
\(0.645\)
\(7.496\)
#5.
\( \sum\limits_{k=2}^{\infty}\ln\left(k-1\right)-\ln\left(k\right)\)
\(-\frac{1}{2}\)
\(-\frac{9}{2}\)
\(0\)
diverges
#6.
\( \sum\limits_{k=1}^{\infty}\frac{-3}{k}+\frac{3}{k+1}\)
\(-3\)
\(-\frac{1}{5}\)
\(2\)
diverges
#7.
\( \sum\limits_{k=-2}^{\infty} \frac{4^k}{3k-2} \)
cannot be determined
converges
diverges
none of the above
#8.
\( \sum\limits_{k=-1}^{\infty} \frac{2^k}{sin(k)} \)
cannot be determined
converges
diverges
none of the above
#9.
\( \sum\limits_{k=2}^{\infty} \frac{-5}{k^{\frac{5}{7}}} \)
cannot be determined
converges
diverges
none of the above
#10.
\( \sum\limits_{k=3}^{\infty} \frac{-5}{k^{\frac{3}{2}}} \)
cannot be determined
converges
diverges
none of the above
#11.
\( \sum\limits_{k=-1}^{\infty} \frac{cos(k)}{5^k} \)
cannot be determined
converges
diverges
none of the above
#12.
\( \sum\limits_{k=2}^{\infty} \frac{3^k}{log(k)} \)
cannot be determined
converges
diverges
none of the above
#13.
\( \sum\limits_{k=0}^{\infty} \frac{(-9)^{{k+1}}}{[sin(-8)]^{{k+1}}} \)
\(-0.014\)
\(-1.124\)
\(-10.22\)
diverges
#14.
\( \sum\limits_{k=-1}^{\infty} \frac{2k}{4^k+1} \)
cannot be determined
converges
diverges
none of the above
#15.
\( \sum\limits_{k=2}^{\infty} \frac{ln(k)}{2^k} \)
cannot be determined
converges
diverges
none of the above
#16.
\( \sum\limits_{k=2}^{\infty} \frac{5^k}{ln(k)} \)
cannot be determined
converges
diverges
none of the above
1
A
B
C
D
2
A
B
C
D
3
A
B
C
D
4
A
B
C
D
5
A
B
C
D
6
A
B
C
D
7
A
B
C
D
8
A
B
C
D
9
A
B
C
D
10
A
B
C
D
11
A
B
C
D
12
A
B
C
D
13
A
B
C
D
14
A
B
C
D
15
A
B
C
D
16
A
B
C
D