2079026015
Infinite Series PracticeName __________

Find the partial sum of the geometric series.

#1. \( \sum\limits_{k=2}^{11} \frac{(-10)^{{k-1}}}{8^{{k-2}}} \)
#2. \( \sum\limits_{k=-2}^{3} \frac{4^{{k+2}}}{5^{{k+1}}} \)

Determine whether the series converges or diverges.

#3. \( \sum\limits_{k=1}^{\infty} \frac{(-9)^{{k+1}}}{(-2)^{{k+1}}} \)
#4. \( \sum\limits_{k=-2}^{\infty} \frac{[sin(6)]^{{k}}}{5^{{k-1}}} \)
#5. \( \sum\limits_{k=-1}^{\infty}\frac{1}{k+4}+\frac{-1}{k+5}\)
#6. \( \sum\limits_{k=2}^{\infty}\frac{-3}{k}+\frac{3}{k+1}\)
#7. \( \sum\limits_{k=-1}^{\infty} \frac{2^k}{sin(k)} \)
#8. \( \sum\limits_{k=1}^{\infty} \frac{5^k}{cos(k)} \)
#9. \( \sum\limits_{k=3}^{\infty} \frac{5}{k^{\frac{1}{9}}} \)
#10. \( \sum\limits_{k=1}^{\infty} \frac{-3}{k^{3}} \)
#11. \( \sum\limits_{k=1}^{\infty} \frac{e^k}{5^k} \)
#12. \( \sum\limits_{k=-1}^{\infty} \frac{e^k}{4^k} \)
#13. \( \sum\limits_{k=0}^{\infty} \frac{3^k+1}{e^k} \)
#14. \( \sum\limits_{k=4}^{\infty} \frac{4^k}{ln(k)} \)
#15. \( \sum\limits_{k=1}^{\infty} \frac{8^{{k+1}}}{(-7)^{{k}}} \)
#16. \( \sum\limits_{k=2}^{\infty}\frac{3}{k+1}+\frac{-3}{k+2}\)
 1
A
B
C
D
 2
A
B
C
D
 3
A
B
C
D
 4
A
B
C
D
 5
A
B
C
D
 6
A
B
C
D
 7
A
B
C
D
 8
A
B
C
D
 9
A
B
C
D
10
A
B
C
D
11
A
B
C
D
12
A
B
C
D
13
A
B
C
D
14
A
B
C
D
15
A
B
C
D
16
A
B
C
D