1837011231
Infinite Series PracticeName __________

Find the partial sum of the geometric series.

#1. \( \sum\limits_{k=-2}^{6} \frac{1}{(-1)^{{k+1}}} \)
#2. \( \sum\limits_{k=0}^{4} \frac{6^{{k-1}}}{3^{{k+2}}} \)

Determine whether the series converges or diverges.

#3. \( \sum\limits_{k=0}^{\infty} \frac{9^{{k-2}}}{5^{{k+1}}} \)
#4. \( \sum\limits_{k=1}^{\infty} 1 \)
#5. \( \sum\limits_{k=-2}^{\infty}\ln\left(k+5\right)-\ln\left(k+6\right)\)
#6. \( \sum\limits_{k=-1}^{\infty}\tan\left(k+3\right)-\tan\left(k+4\right)\)
#7. \( \sum\limits_{k=2}^{\infty} \frac{5^k}{cos(k)} \)
#8. \( \sum\limits_{k=-1}^{\infty} \frac{4^k+2}{e^k-2} \)
#9. \( \sum\limits_{k=3}^{\infty} \frac{-6}{k^{\frac{7}{3}}} \)
#10. \( \sum\limits_{k=1}^{\infty} \frac{1}{k^{\frac{10}{9}}} \)
#11. \( \sum\limits_{k=0}^{\infty} \frac{e^k}{4^k} \)
#12. \( \sum\limits_{k=3}^{\infty} \frac{ln(k)}{2^k} \)
#13. \( \sum\limits_{k=-2}^{\infty} \frac{4^k}{e^k} \)
#14. \( \sum\limits_{k=2}^{\infty} \frac{2^k}{ln(k)} \)
#15. \( \sum\limits_{k=-1}^{\infty} \frac{9^{{k-1}}}{[sin(-7)]^{{k+2}}} \)
#16. \( \sum\limits_{k=1}^{\infty} \frac{-2}{k^{\frac{3}{2}}} \)
 1
A
B
C
D
 2
A
B
C
D
 3
A
B
C
D
 4
A
B
C
D
 5
A
B
C
D
 6
A
B
C
D
 7
A
B
C
D
 8
A
B
C
D
 9
A
B
C
D
10
A
B
C
D
11
A
B
C
D
12
A
B
C
D
13
A
B
C
D
14
A
B
C
D
15
A
B
C
D
16
A
B
C
D