1182772199
The Four Fundamental SubspacesName __________

Describe the column space \(C(A)\) of \(A\).

#1. \(A=\begin{bmatrix} -6 & -9\\-7 & -9\\-6 & -1\\\end{bmatrix}\)
#2. \(A=\begin{bmatrix} 2 & -7 & 2 & 3\\-10 & -3 & 5 & -1\\\end{bmatrix}\)

Describe the null space \(N(A)\) of \(A\).

#3. \(A=\begin{bmatrix} 1 & 7 & 40\\-7 & 1 & -30\\9 & 1 & 50\\\end{bmatrix}\)
#4. \(A=\begin{bmatrix} -4 & 4 & -16\\-2 & -4 & -2\\-8 & 7 & -31\\\end{bmatrix}\)

Describe the row space \(C(A^T)\) of \(A\).

#5. \(A=\begin{bmatrix} 1 & 1\\4 & -4\\7 & 3\\7 & -5\\\end{bmatrix}\)
#6. \(A=\begin{bmatrix} -7 & -3\\6 & -7\\10 & 4\\\end{bmatrix}\)

Describe the left null space \(N(A^T)\) of \(A\).

#7. \(A=\begin{bmatrix} 2 & 3\\-9 & 2\\-3 & 9\\6 & 4\\\end{bmatrix}\)
#8. \(A=\begin{bmatrix} -5 & -4\\9 & 5\\6 & -10\\1 & 5\\\end{bmatrix}\)

Determine the rank of \(A\).

#9. \(A=\begin{bmatrix} -1 & -4\\-4 & 1\\4 & -4\\10 & 7\\\end{bmatrix}\)
#10. \(A=\begin{bmatrix} -2 & 6\\-1 & -6\\4 & 5\\-2 & 8\\\end{bmatrix}\)
1
A
B
C
D
2
A
B
C
D
3
A
B
C
D
4
A
B
C
D
5
A
B
C
D
6
A
B
C
D
7
A
B
C
D
8
A
B
C
D
9
A
B
C
D
10
A
B
C
D